Abstract

In this proceedings the Finite Difference Time Domain (FDTD) and frequency domain Finite Element (FE) methods are used to model both linear chirped pulse and arbitrary chirped pulse propagation in 2D Photonic Crystal (PhC) waveguides. An in-house FDTD code has been implemented which allows the study of pulse propagation in a very direct way. The carrier wavelength of the pulse is swept across the bandwidth of a mini-stopband feature and pulse compression behaviour is observed. In the case of linear chirped pulse, both round hole and square hole PhC waveguides are studied with the latter giving increased pulse compression. An input pulse is then derived from a SOA model which has arbitrary chirp. This is passed through a mini-stop band in a narrowed W3 PhC waveguide and pulse compression is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.