Abstract

Laboratory incubations were used to investigate the influence of soil mixing intensity and waterlogged conditions on nutrient mobilisation from models of cultivated heathland soil. Fragmentation of the peaty surface horizon after different soil cultivation intensities was simulated using four different surface areas of peat organic matter. In well aerated conditions, increased mobilisation of C, NH4+−N, PO43−, K+, Ca2+ and Mg2+ was observed with increased mixing intensity and increased surface area of peat. For all nutrients apart from calcium, intensively mixed treatments showed higher mobilisation rates under waterlogging than under well aerated conditions. This was particularly clear for NH4−−N and PO43− mobilisation. Simple linear regression analysis showed that, under aerated conditions, for four mixing intensities, rates of mobilisation of NH4+−N, PO43−, K+, Ca2+ and Mg2+ were approximately constant per unit of peat surface area exposed during soil mixing. Waterlogging was more important than soil mixing intensity in determining nitrogen mobilisation rates in saturated soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.