Abstract

Abstract A pilot study was performed at the Sainte-Julie wastewater treatment plant to evaluate the potential of using the Moving-Bed biofilm reactor (MBBR) process for removing BOD5 (5-day biochemical oxygen demand) and ammonia nitrogen in a two-stage process at the exit of the first lagoon. Nitrification was observed in the first reactor at rates similar to those reported in the literature for a similar biomass carrier when bulk liquid dissolved oxygen (DO) concentrations were 6 g of O2 per m3. Nitrification rates were significantly reduced when DO was reduced to 3 g of O2 per m3. DO concentrations were maintained at 6 g of O2 per m3 in the second reactor, and nitrification rates comparable to those reported in the literature were observed for a temperature range of 3 to 16°C. An empirical DO-limited model was validated for the first reactor while in the second reactor nitrification was found to be either DO limited or total-ammonia-nitrogen limited, depending on nitrification rates in the upstream reactor. The DO-limited model predicts that the MBBR process is more sensitive to organic load than it is to temperature. A commercially available numerical model was calibrated to the results of the pilot study. Model results indicate that detachment and attachment rates play an important role in determining nitrification rates in the biofilm. Similar nitrification rates in an MBBR system installed upstream and downstream from an aerated lagoon in winter conditions were predicted using the empirical DO-limited model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.