Abstract
In this paper neural networks are utilized to represent the rheological behaviour of nickel-base superalloys under hot forging conditions. A feedforward back-propagation neural network has been trained and tested on rheological data, obtained from hot compression experiments, performed under single- and multi-step deformation conditions, both at constant and varying strain rates. The good agreement between experimental and calculated flow curves shows that a properly trained neural network can be successfully employed in representing a material response to hot forging cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.