Abstract

Natural disturbances play a key role in ecosystem dynamics and are important factors for sustainable forest ecosystem management. Quantitative models are frequently employed to tackle the complexities associated with disturbance processes. Here we review the wide variety of approaches to modelling natural disturbances in forest ecosystems, addressing the full spectrum of disturbance modelling from single events to integrated disturbance regimes. We applied a general, process-based framework founded in disturbance ecology to analyze modelling approaches for drought, wind, forest fires, insect pests and ungulate browsing. Modelling approaches were reviewed by disturbance agent and mechanism, and a set of general disturbance modelling concepts was deduced. We found that although the number of disturbance modelling approaches emerging over the last 15 years has increased strongly, statistical concepts for descriptive modelling are still largely prevalent over mechanistic concepts for explanatory and predictive applications. Yet, considering the increasing importance of disturbances for forest dynamics and ecosystem stewardship under anthropogenic climate change, the latter concepts are crucial tool for understanding and coping with change in forest ecosystems. Current challenges for disturbance modelling in forest ecosystems are thus (i) to overcome remaining limits in process understanding, (ii) to further a mechanistic foundation in disturbance modelling, (iii) to integrate multiple disturbance processes in dynamic ecosystem models for decision support in forest management, and (iv) to bring together scaling capabilities across several levels of organization with a representation of system complexity that captures the emergent behaviour of disturbance regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.