Abstract

The functional properties of skeletal muscles depend on the spatial arrangements of fast and slow muscle fibre types. Qualitative assessment of muscle configurations suggest that muscle disease and normal ageing are associated with visible changes in the spatial pattern, though a lack of statistical modelling hinders our ability to formally assess such trends. We design a nested Gaussian conditional autoregressive (CAR) model to quantify spatial features of dichotomously marked muscle fibre networks and implement it within a Bayesian framework. Our model is applied to data from a human skeletal muscle and results reveal spatial variation at multiple levels across the muscle. The model provides the foundation for future research in describing the extent of change to normal muscle fibre type parameters under experimental or pathological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.