Abstract
Quantifying the training and competition loads of players in contact team sports can be performed in a variety of ways, including kinematic, perceptual, heart rate or biochemical monitoring methods. Whilst these approaches provide data relevant for team sports practitioners and athletes, their application to a contact team sport setting can sometimes be challenging or illogical. Furthermore, these methods can generate large fragmented datasets, do not provide a single global measure of training load and cannot adequately quantify all key elements of performance in contact team sports. A previous attempt to address these limitations via the estimation of metabolic energy demand (global energy measurement) has been criticised for its inability to fully quantify the energetic costs of team sports, particularly during collisions. This is despite the seemingly unintentional misapplication of the model's principles to settings outside of its intended use. There are other hindrances to the application of such models, which are discussed herein, such as the data-handling procedures of Global Position System manufacturers and the unrealistic expectations of end users. Nevertheless, we propose an alternative energetic approach, based on Global Positioning System-derived data, to improve the assessment of mechanical load in contact team sports. We present a framework for the estimation of mechanical work performed during locomotor and contact events with the capacity to globally quantify the work done during training and matches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.