Abstract

This paper presents a dynamic simulation approach to investigating liquid loading in gas wells for a fluid flowing in the mist flow regime. Two-component gas-liquid two-phase flow is considered, using coupled thermodynamic and hydrodynamic models as well as constitutive equations that incorporate the Peng-Robinson equation of state and the convex hull algorithm. The behaviour of the flow properties is investigated as phase change occur during flow. The accumulation of liquids is explored by investigating the distribution of the liquid density in the tubing, which is explicitly determined from the flow variables. The calculated phase densities are validated using data obtained from NIST RefProp and the results show good agreement. This procedure can provide substantial benefits in investigating the phenomena of liquid loading in gas wells compared to critical velocity predicting models that determine the stagnation velocity under isothermal conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call