Abstract

In this paper, we explore the notion that a human driver uses a receding horizon model predictive control (MPC) scheme for minimum-time manoeuvering. However, MPC is an inherently sub-optimal control scheme because not all future information is incorporated into its finite preview horizon. In many practical applications, this sub-optimality is tolerated as the solution is sufficiently close to optimal. However, it is known that professional drivers have the ability to learn driving circuits and exploit its features to minimise their global manoeuvering time. In this paper, we will model their process with a cascaded optimisation structure. Therein, the inner-loop features a local MPC scheme tasked with finding the control inputs that achieve a blended objective of minimising time and maximising velocity in each preview horizon/distance. The outer loop of this cascaded structure computes the best set of weights for the two components of the local objectives in order to minimise the global manoeuvering time. The proposed cascaded optimisation and control approach is compared against a straight-forward fixed-cost time optimal MPC applied to minimum-time manoeuvering over two well-known race courses. The paper also includes an extended literature review and details of the computational formulation of the model approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.