Abstract

Direct contact membrane distillation process has been studied using microporous polytetrafluoroethylene and polyvinylidene fluoride membranes. The membranes were characterized in terms of their non-wettability, pore size distribution and porosity. The mean pore sizes and pore size distributions were obtained by means of wet/dry flow method. The mean pore size and the effective porosity of the membranes were also determined from the gas permeation test. A theoretical model that considers the pore size distribution together with the gas transport mechanisms through the membrane pores was developed for this process. The contribution of each mass transport mechanism was analyzed. It was found that both membranes have pore size distributions in the Knudsen region and in the transition between Knudsen and ordinary diffusion region. The transition region was the major contribution to mass transport. The predicted water vapor permeability of the membranes were compared with the experimental ones. The effect of considering pore size distribution instead of mean pore size to predict the water vapor permeability of the membranes was investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.