Abstract

Disease is a major constraint on animal production and welfare in agriculture and aquaculture. Movement of animals between farms is one of the most significant routes of disease transmission and is particularly hard to control for pathogens with subclinical infection. Renibacterium salmoninarum causes bacterial kidney disease (BKD) in salmonid fish, but infection is often sub-clinical and may go undetected with major potential implications for disease control programmes. A Susceptible-Infected model of R. salmoninarum in Scottish aquaculture has been developed that subdivides the infected phase between known and undetected sub-clinically infected farms and diseased farms whose status is assumed to be known. Farms officially known to be infected are subject to movement controls restricting spread of infection. Model results are sensitive to prevalence of undetected infection, which is unknown. However, the modelling suggests that controls that reduce BKD prevalence include improve biosecurity on farms, including those not known to be infected, and improved detection of infection. Culling appears of little value for BKD control. BKD prevalence for rainbow trout farms is less sensitive to controls than it is for Atlantic salmon farms and so different management strategies may be required for the sectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call