Abstract

Several insect endosymbionts have evolved to become plant pathogens, but the causes of this transition are currently unknown. In this paper, we use adaptive dynamics to develop hypotheses to explain why an insect endosymbiont would evolve to become a plant pathogen. We develop a model of facultative insect endosymbionts, capable of both vertical transmission within the insect population and horizontal transmission between insect and plant populations. We assume that an evolutionary trade-off between vertical and horizontal transmission exists. The transmission method of an endosymbiont is correlated with the nature of the symbiotic relationship between host and symbiont. We assume that vertical transmission represents an insect endosymbiont lifestyle and horizontal transmission represents a plant pathogen lifestyle. Our results suggest that temperature increases, increased agricultural intensification, disease dynamics within the plant host, insect mating system and change in the host plant of the insect may influence an evolutionary transition from an insect endosymbiont to a plant pathogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call