Abstract
Matrix population models, elasticity analysis and loop analysis can potentially provide powerful techniques for the analysis of life histories. Data from a capture–recapture study on a population of southern highland water skinks (Eulamprus tympanum) were used to construct a matrix population model. Errors in elasticities were calculated by using the parametric bootstrap technique. Elasticity and loop analyses were then conducted to identify the life history stages most important to fitness. The same techniques were used to investigate the relative importance of fast versus slow growth, and rapid versus delayed reproduction. Mature water skinks were long-lived, but there was high immature mortality. The most sensitive life history stage was the subadult stage. It is suggested that life history evolution in E. tympanum may be strongly affected by predation, particularly by birds. Because our population declined over the study, slow growth and delayed reproduction were the optimal life history strategies over this period. Although the techniques of evolutionary demography provide a powerful approach for the analysis of life histories, there are formidable logistical obstacles in gathering enough high-quality data for robust estimates of the critical parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.