Abstract

AbstractThis work is inspired by the discovery of a new class of dynamical system described by ordinary differential equations coupled with their Liouville equation. These systems called self-controlled since the role of actuators is played by the probability produced by the Liouville equation. Following the Madelung equation that belongs to this class, non-Newtonian properties such as randomness, entanglement and probability interference typical for quantum systems have been described. Special attention was paid to the capability to violate the second law of thermodynamics, which makes these systems neither Newtonian, nor quantum. It has been shown that self-controlled dynamical systems can be linked to mathematical models of living systems. The discovery of isolated dynamical systems that can decrease entropy in violation of the second law of thermodynamics, and resemblances of these systems to livings suggests that ‘Life’ can slow down the ‘heat death’ of the Universe and that can be associated with the Purpose of Life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.