Abstract
BackgroundThe development of vaccines and evaluation of novel treatment strategies for invasive group A streptococcal (iGAS) disease requires suitable models of human infection that can be monitored longitudinally and are preferably non-invasive. Bio-photonic imaging provides an opportunity to reduce use of animals in infection modelling and refine the information that can be obtained, however the range of bioluminescent GAS strains available is limited. In this study we set out to develop bioluminescent iGAS strains for use in in vivo pneumonia and soft tissue disease models.ResultsUsing clinical emm1, emm3, and emm89 GAS strains that were transformed with constructs carrying the luxABCDE operon, growth and bioluminescence of transformed strains were characterised in vitro and in vivo.Emm3 and emm89 strains expressed detectable bioluminescence when transformed with a replicating plasmid and light production correlated with viable bacterial counts in vitro, however plasmid instability precluded use in the absence of antimicrobial pressure. Emm89 GAS transformed with an integrating construct demonstrated stable bioluminescence that was maintained in the absence of antibiotics. Bioluminescence of the emm89 strain correlated with viable bacterial counts both in vitro and immediately following infection in vivo. Although bioluminescence conferred a detectable fitness burden to the emm89 strain during soft tissue infection in vivo, it did not prevent dissemination to distant tissues.ConclusionDevelopment of stably bioluminescent GAS for use in vitro and in vivo models of infection should facilitate development of novel therapeutics and vaccines while also increasing our understanding of infection progression and transmission routes.
Highlights
The development of vaccines and evaluation of novel treatment strategies for invasive group A streptococcal disease requires suitable models of human infection that can be monitored longitudinally and are preferably non-invasive
Growth and stability of emm1, emm3 and emm89 Group A streptococcus (GAS) isolates transformed with a replicative plasmid containing the lux operon Transformation of GAS with the lux operon on a replicative plasmid resulted in light production by emm3 (M3pLux) and emm89 (M89pLux) strains, but not emm1 (M1pLux) (Fig. 1a-c)
We observed that M1pLux maintained a functional lux operon despite not producing any light, as we were able to extract the plasmid, transform, and successfully express the operon in Escherichia coli
Summary
The development of vaccines and evaluation of novel treatment strategies for invasive group A streptococcal (iGAS) disease requires suitable models of human infection that can be monitored longitudinally and are preferably non-invasive. Bio-photonic imaging provides an opportunity to reduce use of animals in infection modelling and refine the information that can be obtained, the range of bioluminescent GAS strains available is limited. In this study we set out to develop bioluminescent iGAS strains for use in in vivo pneumonia and soft tissue disease models. To refine animal models of iGAS using BPI, bioluminescent derivatives of dominant iGAS serotypes are required which produce enough light to be detected in vivo, demonstrate stability, and are not attenuated in comparison to the parent wildtype strains [4,5,6].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.