Abstract
A computer model is presented in which the role of cytoplasmic fatty acid-binding protein (FABP) in the intracellular translocation of fatty acids (FA) from one membrane to an opposite membrane is studied. The model consists of a cubical space, in which FABP and FA are allowed to diffuse at random. The amount of FA released from the donor membrane and reaching an opposite acceptor membrane is calculated in a variety of conditions. The data provided by the various simulations suggest that FABP can play a significant role in intracellular FA transport only if FABP is able to take up FA directly from FA containing membranes and to directly deliver FA to an acceptor membrane, thus preventing the unfavourable thermodynamical situation in which FA must solubilize in an aqueous environment prior to binding to FABP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.