Abstract

Jet noise is a significant contributor to aircraft noise, and on modern aircraft it is considerably enhanced at low frequencies by a closely installed wing. Recent research has shown that this noise increase is due to the scattering of jet instability waves by the trailing edge of the wing. Experimentalists have recently shown that noise can be reduced by using wings with swept trailing edges. To understand this mechanism, in this paper, we develop an analytical model to predict the installed jet noise due to the scattering of instability waves by a swept wing. The model is based on the Schwarzschild method and Amiet’s approach is used to obtain the far-field sound. The model can correctly predict both the reduction in installed jet noise and the change to directivity patterns observed in experiments due to the use of swept wings. The agreement between the model and experiment is very good, especially for the directivity at large azimuthal angles. It is found that the principal physical mechanism of sound reduction is due to destructive interference. It is concluded that in order to obtain an effective noise reduction, both the span and the sweep angle of the wing have to be large. Such a model can greatly aid in the design of quieter swept wings and the physical mechanism identified can provide significant insight into developing other innovative noise-reduction strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.