Abstract

Spatiotemporal patterns of earth surface deformation are influenced by a combination of the geologic, topographic, seismic, anthropogenic, meteorological and climatic conditions specific to any landscape of interest. These have been mostly modelled through machine learning tools. However, these influences are yet to be explored and exploited to train interpretable data-driven models and then make predictions on the deformation one may expect in space or time. This work explored this aspect by proposing the first multivariate model dedicated to InSAR-derived deformation data. The results we obtain are promising for we suitably retrieved the signal of environmental predictors, from which we then estimated the mean line of sight velocities for a number of hillslopes affected by seismic shaking. The importance of such models resides in its potential for opening an entirely new research line for slope instability modelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.