Abstract

Abstract A kinetic model constituted by ozone mol balance equations both in the gas and in the water phases and a total mole balance equation has been applied to predict concentrations of dissolved ozone, Co3, ozone partial pressure at the reactor outlet, P(o3)0, and remaining chemical oxygen demand, COD, for the ozonation of two industrial wastewaters released from distillery and tomato processing plants. Kinetic equations for ozone absorption rate present in the model were derived from the application of film theory to an irreversible gas-liquid reaction. Parameters involved in the model, reaction rate and mass transfer coefficients, Henry's law constant, etc., were estimated from bench-scale experiments. The model was applied to ozonation in bubble contactors of height/diameter ratio equal to that of the bench scale contactor and to a pilot plant bubble column of a height/diameter ratio about 3.6 times higher.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.