Abstract

A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.

Highlights

  • Rapid urbanization in watershed, with the increasing impervious area, implies both larger stormwater runoff volumes and peak flows and reduces other components of the hydrologic cycle, for example, infiltration and evapotranspiration

  • Bioretention has played an important role in the implementation of best management practice (BMP) and low impact development (LID) in America, water sensitive urban design (WSUD) in Australia, and sustainable urban drainage system (SUDS) in England

  • The main objective of this study is to evaluate the hydrologic performance of bioretention facilities and provide instructive guidance for their design and application in Beijing

Read more

Summary

Introduction

With the increasing impervious area, implies both larger stormwater runoff volumes and peak flows and reduces other components of the hydrologic cycle, for example, infiltration and evapotranspiration. The negative impacts of urban stormwater have received widespread recognition [1], and maintaining stormwater quantity (e.g., flood peak and total volume) and quality (e.g., pollution) as close as the predevelopment levels has become increasingly popular. Bioretention, known as rain garden, biofilter, or biofiltration, is a terrestrial-based water quantity and quality control practice that can be designed to mimic predevelopment hydrology (PGCo, 2007). It is commonly used as a source control technique to manage stormwater runoff in areas under urbanization and a retrofit technique in already developed areas [2]. Bioretention has played an important role in the implementation of best management practice (BMP) and low impact development (LID) in America, water sensitive urban design (WSUD) in Australia, and sustainable urban drainage system (SUDS) in England

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call