Abstract

The power–duration relationship describes the time to exhaustion for exercise at different intensities. It is believed to be a “fundamental bioenergetic property of living systems” that this relationship is hyperbolic. Indeed, the hyperbolic (a.k.a. critical-power) model which formalises this belief is the dominant tool for describing and predicting high-intensity exercise performance, e.g. in cycling, running, rowing or swimming. However, the hyperbolic model is now the focus of a heated debate in the literature because it unrealistically represents efforts that are short (< 2 min) or long (> 15 min). We contribute to this debate by demonstrating that the power–duration relationship is more adequately represented by an alternative, power-law model. In particular, we show that the often-observed good fit of the hyperbolic model between 2 and 15 min should not be taken as proof that the power–duration relationship is hyperbolic. Rather, in this range, a hyperbolic function just happens to approximate a power law fairly well. We also prove mathematical results which suggest that the power-law model is a safer tool for pace selection than the hyperbolic model and that the former more naturally models fatigue than the latter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call