Abstract
In this study, the internal phase distributions of gas-liquid bubbly flow in a horizontal pipe have been predicted using the population balance model based on Average Bubble Number Density approach. Four flow conditions with average gas volume fraction ranging from 4.4% to 20% have been investigated. Predicted local radial distributions of void fraction, interfacial area concentration and gas velocity have been validated against the experimental data. In general, satisfactory agreements between predicted results and measured values have been achieved. For high superficial gas velocity, it has been ascertained that peak local void fraction of 0.7 with interfacial area concentration of 800 m−1 can be encountered near the top wall of the pipe. Some discrepancies have nonetheless been found between the numerical and experimental results at certain locations of the pipe. The insufficient resolution of the turbulent model in fully accommodating the strong turbulence in the current pipe orientation and the inclusion of additional interfacial force such as the prevalent bouncing force among bubbles remain some of the outstanding challenging issues need to be addressed in order to improve the prediction of horizontal gas-liquid bubbly flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Computational Multiphase Flows
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.