Abstract

Recently reported kinetic and stoichiometric parameters of the Activated Sludge Model no. 2d (ASM2d) for high-temperature EBPR processes suggested that the absence of glycogen in the model contributed to underestimation of PHA accumulation at 32 °C. Here, two modified ASM2d models were used to further explore the contribution of glycogen in the process. The ASM2d-1G model incorporated glycogen metabolism by PAOs (polyphosphate-accumulating organisms), while the ASM2d-2G model further included processes by GAOs (glycogen-accumulating organisms). These models were calibrated and validated using experimental data at 32 °C. The ASM2d-1G model supported the hypothesis that the excess PHA was attributed to glycogen, but remained inadequate to capture the dynamics of glycogen without considering GAOs activities. The ASM2d-2G model performed better, but it was challenging to calibrate as it often led to wash-out of either PAOs or GAOs. Associated hurdles are highlighted and additional efforts in calibrating ASM2d-2G more effectively are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.