Abstract

Chip formation in metal cutting is associated with large strains and high strain rates, concentrated locally to deformation zones in front of the tool and beneath the cutting edge. Furthermore, dissipative plastic work and friction work generate high local temperatures. These phenomena together with numerical complications make modelling of metal cutting difficult. Material models, which are crucial in metal cutting simulations, are usually calibrated based on data from material testing. Nevertheless, the magnitude of strains and strain rates involved in metal cutting are several orders higher than those generated from conventional material testing. A highly desirable feature is therefore a material model that can be extrapolated outside the calibration range. In this study, two variants of a flow stress model based on dislocation density and vacancy concentration are used to simulate orthogonal metal cutting of AISI 316L stainless steel. It is found that the addition of phonon drag improves the results somewhat but the addition of this phenomenon still does not make it possible to extrapolate the constitutive model reliably outside its calibration range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.