Abstract

This paper describes a 1-D numerical model for the prediction of heat and mass transfer through an intumescent paint that is applied to an on-board high-pressure GH2 storage tank. The intumescent paint is treated as a composite system, consisting of three general components, decomposing in accordance with independent finite reaction rates. A moving mesh, that is employed for a better prediction of the expansion process of the intumescent paint, is based on the local changes of heat and mass. The numerical model is validated against experiments by Cagliostro et al. (1975). The overall model results are used to estimate effect of intumescent paint on fire resistance of carbon-fibre reinforced GH2 storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.