Abstract

ABSTRACTA methodology was developed to predict the optimum long-term spatial and temporal generation of landfill gases such as methane, carbon dioxide, ammonia, and hydrogen sulphide on post-closure landfill. The model incorporated the chemical and the biochemical processes responsible for the degradation of the municipal solid waste. The developed model also takes into account the effects of heterogeneity with different layers as observed at the site of landfills’ morphology. The important parameters for gas generation due to biodegradation such as temperature, pH, and moisture content were incorporated. The maximum and the minimum generations of methane and hydrogen sulphide were observed. The rate of gas generation was found almost same throughout the depth after 30 years of landfill closure. The proposed model would be very useful for landfill engineering in the mining landfill gas and proper design for landfill gas management systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.