Abstract
Remote sensing has revolutionized forest management and has been widely employed to model canopy gaps. In this study, a canopy height model (CHM) and an intensity raster (IR) derived from light detection and ranging (LiDAR) data were used to model canopy gaps within a four-year-old Eucalyptus grandis forest using an object-based image analysis (OBIA) approach. Model thematic accuracies using the CHM, intensity raster and combined data set (CHM and IR) were all above 90%, with KHAT values ranging from 0.88 to 0.96. Independent test thematic accuracies were also above 90%, with KHAT values ranging from 0.82 to 0.91. A comparative area-based assessment yielded accuracies ranging from 70 to 90%, with the highest accuracies achieved using the combined data set. The results of this study show that using a CHM and intensity raster, and an OBIA approach, provides a viable framework to accurately detect and delineate canopy gaps within a commercial forest environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.