Abstract
We consider flexible manufacturing systems (FMSs) which are composed of a set of workstations linked together with a material handling system (MHS). Each workstation consists of an input buffer, a single machine and an output buffer. The MHS consisting of a single cart routes work among the workstations according to the process paths required by the work. We deal with an optimal control problem in this FMS. We model the FMS as a closed queueing network. In the model, the cart routes the work to the workstations in accordance with a Markov routing with exponentially distributed routing time, and the machines process work with exponentially distributed processing time. An objective is to find a work routing policy that maximizes the total expected reward earned by operating machines. This optimal control problem is formulated as an undiscounted semi-Markov decision process. Structural properties of an optimal policy are analysed. Moreover, a sufficient condition is derived for the optimal policy to be of control limit type. An example is given to illustrate the result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.