Abstract

A method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is presented, which falls into the general category of arbitrary Lagrangian-Eulerian methods. The method is based on a fixed mesh that is modified locally both in space and time to describe the moving interfaces that are allowed to displace independently of the mesh. It results in a fully robust formulation capable of calculating in irregular meshes on domains of complex geometry containing moving devises without danger of the mesh becoming unsuitable due to its continuous deformation. This work presents the ideas in the context of two space dimensions, and constitutes the first stage in the development of a three-dimensional model to interface with the KIVA simulator developed by Los Alamos National Laboratory. The method’s capabilities and accuracy are assessed using several examples including a case that has an analytical solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call