Abstract

Computational approaches can be used to detect leakages in water distribution networks. One such approach is the Artificial Neural Networks (ANNs) technique. The advantage of ANNs is that they are robust and can be used to model complex linear and non-linear systems without making implicit assumptions. ANNs can be trained to forecast flow dynamics in a water distribution network. Such flow dynamics can be compared with water demands in a particular district metered area. The objective of this study was to model flow dynamics in four district metered areas of the City of Harare, Zimbabwe using the ANNs technique in an effort to detect systems leakages. A multi-layer feed-forward back-propagation artificial neural network was used for modelling the flow and simulate water demand using a Matlab Neural Network Toolkit. The difference between actual water consumed (metered consumption) and the simulated water demand for a district metered area represents the water leakage in the water distribution network of the district metered area. It was discovered that an ANN could be trained and be used to forecast flow with up to 99% confidence. Thus, ANNs technique is a flexible and efficient approach to detection of leakages in water distribution networks.Keywords: Artificial neural network; Leakage detection technique; Water distribution; Leakages

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.