Abstract
There is now considerable evidence that fine-grained acoustic-phonetic detail in the speech signal helps listeners to segment a speech signal into syllables and words. In this paper, we compare two computational models of word recognition on their ability to capture and use this finephonetic detail during speech recognition. One model, SpeM, is phoneme-based, whereas the other, newly developed FineTracker, is based on articulatory features. Simulations dealt with modelling the ability of listeners to distinguish short words (e.g., ‘ham’) from the longer words in which they are embedded (e.g., ‘hamster’). The simulations with FineTracker showed that it was, like human listeners, able to distinguish between short words from the longer words in which they are embedded. This suggests that it is possible to extract this fine-phonetic detail from the speech signal and use it during word recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.