Abstract

AbstractTraditional methods for building fault models are time-consuming when applied to a complex fault network or where many faults exist since the workflows typically rely on manual intervention at several stages. Structural detail is often simplified to reduce cycle times and consequently, the workflow favours large-scale and simplistic fault systems. There is generally no integrated assessment of kinematic information that would be useful in guiding fault interpretation. A new methodology for constructing a complex fault network with small offset is presented. The method recognizes that interpretation of large numbers of interconnected low displacement faults, is most efficiently done using map based interpretations. A novel semi-automated skeletonization algorithm is used to extract fault traces from horizon maps providing a polyline data set for subsequent use in 3D surface creation. Displacement information is derived automatically during or after the skeletonization providing kinematic information for guiding further interpretation. The new method is validated against manual interpretations of fault geometry and displacement before application to a region of the Central North Sea exposing polygonal faults. The new technique allows for the first time, a rapid and accurate appraisal of complex near-seismic scale fault geometry and displacement from interpretations of 3D seismic data across a large survey area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call