Abstract

The Coronagraph is a key instrument on the Large UV-Optical-Infrared (LUVOIR) Surveyor mission concept. The Apodized Pupil Lyot Coronagraph (APLC) is one of the baselined mask technologies to enable 1E10 contrast observations in the habitable zones of nearby stars. The LUVOIR concept uses a large, segmented primary mirror (9--15 meters in diameter) to meet its scientific objectives. For such an observatory architecture, the coronagraph performance depends on active wavefront sensing and control and metrology subsystems to compensate for errors in segment alignment (piston and tip/tilt), secondary mirror alignment, and global low-order wavefront errors. Here we present the latest results of the simulation of these effects for different working angle regions and discuss the achieved contrast for exoplanet detection and characterization under these circumstances, including simulated observations using high-fidelity spatial and spectral models of planetary systems generated with Haystacks, setting boundaries for the tolerance of such errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.