Abstract
This paper investigates the use of latent variable models in assessing escalation in crime seriousness. It has two aims. The first is to contrast a mixed-effects approach to modelling crime escalation with a latent variable approach. The paper therefore examines whether there are specific subgroups of offenders with distinct seriousness trajectory shapes. The second is methodological—to compare mixed-effects modelling used in previous work on escalation with group-based trajectory modelling and growth mixture modelling (mixture of mixed-effects models). The availability of software is an issue, and comparisons of fit across software packages is not straightforward. We suggest that mixture models are necessary in modelling crime seriousness, that growth mixture models rather than group-based trajectory models provide the best fit to the data, and that R gives the best software environment for comparing models. Substantively, we identify three latent groups, with the largest group showing crime seriousness increases with criminal justice experience (measured through number of conviction occasions) and decreases with increasing age. The other two groups show more dramatic non-linear effects with age, and non-significant effects of criminal justice experience. Policy considerations of these results are briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.