Abstract

Building envelope systems that integrate Phase Change Materials (PCMs) are solutions aimed at increasing the thermal energy storage potential of the building envelope while keeping its mass reasonably low. Building envelope components with PCMs can be either opaque or transparent and can be based on different types of PCMs and integration methods. In opposition to conventional building components, these elements present thermal and optical properties that are highly non-linear and depend to a great extent on the boundary conditions. Such a characteristic requires the system development and optimisation process during the design phase to be carried out with particular care in order to achieve the desired performance. In this paper, a review of the existing modelling capabilities of different building energy simulation (BES) tools for PCM-based envelope components is reported, and the main challenges associated with the modelling and simulation of these systems through the most popular BES tools (among them, EnergyPlus, IDA-ICE, TRNSYS, IES-VE, and ESP-r) are highlighted. The aim of this paper is to summarise the evidence found in the literature of the latestdevelopment in the successful use of BES to replicate the thermal and optical behaviour of opaque and transparent components integrating PCMs, in order to provide the community of professionals with an overview of the tools available and their limitations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call