Abstract

The speed at which established socioeconomic and technological systems can be adapted to alternatives that are compatible with a climate stabilised, 2°C world remains unknown. Quantitative models used for assessing this challenge typically make a number of arguably optimistic assumptions regarding human behaviour and decision making. This often restricts the insights produced to futures approximating a so-called first-best policy landscape. However, empirical studies of socio-technical change have shown that technological diffusion is often influenced by actors and institutions interacting under less ideal, second-best conditions. This paper quantifies these factors in a formal energy model as landscape and actor inertia and employs them for the first time in BLUE, a dynamic stochastic socio-technical simulation of technology diffusion, energy and emissions inspired by the multi-level perspective. Using the UK energy system as an example, the results illustrate how socio-technical inertia may significantly blunt future efforts to achieve climate targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call