Abstract

We present a computational scheme to simulate beam induced dynamics of atoms in surface dominated, metallic systems. Our approach is based on molecular dynamics and Monte Carlo techniques. The model is tested with clusters comprised of either Ni, Ag or Au. We vary their sizes and apply different electron energies and cluster temperatures to elucidate fundamental relations between these experimental parameters and beam induced displacement probabilities. Furthermore, we demonstrate the capability of our code to simulate beam driven dynamics by using Ag and Au clusters as demonstration systems. Simulations of beam induced displacement and sputtering effects are compared with experimental results obtained via scanning transmission electron microscopy. The clusters in question are synthesised with exceptional purity inside inert superfluid He droplets and deposited on amorphous carbon supports. The presented results may help to understand electron beam driven processes in metallic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.