Abstract

AbstractQuestion: Which thermal climate model performs best in predicting the combined effects of temperature and radiation on forest vegetation in the Bavarian Alps?Location: Bavarian Alps, Germany.Methods: In order to find the best model for effective thermal climate for the Bavarian Alps, we analysed models using the following predictors derived from climate data and/or a digital elevation model: (a) temperature variables only, (b) temperature plus slope aspect and inclination, and (c) temperature plus potential global solar radiation. Models were tested by linear regression against four response variables based on average Ellenberg indicator values for temperature (cover weighted/unweighted, with/without bryophytes), which were computed for 2280 georeferenced relevés from the vegetation database BERGWALD. We optimized (b) by empirically searching for thermally most favourable slope aspect and inclination.Results: Closest model fit was achieved for unweighted temperature values based on vascular plants without bryophytes. Model fit (adj. R2) increased from using temperature alone to temperature–radiation, to temperature–aspect–inclination as predictors. The best spatially explicit model for predicting temperature values (adj. R2=0.57) was based on the variable combination mean temperature in the growing season (May to September), slope aspect (optimal aspect 195°) and inclination (optimal slope 30°).Conclusion: Combining mean temperatures and relief variables in GIS allows creation of predictive maps of mountain forest response to thermal climate. Applied to climate change scenarios, our model can forecast potential vegetation distribution in the future. The superiority of simple empirical relief factors over a widely used model of potential radiation casts doubt on the meaningfulness of the latter for vegetation studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.