Abstract

Road accidents caused by heavy rain have become a frightening issue in recent years requiring investigation. In this regard, an aerodynamic comparative and experimental rain study is carried out to observe the flow phenomena change around a generic ground vehicle (Ahmed Body at a scale) and the utility truck. In this paper, a Discrete Phase Model (DPM) based computational methodology is used to estimate the effect of rain on aerodynamic performance. First, an experimental rain study of the Ahmed body at a scale that is representative of a car or light truck was conducted at the Wall of Wind (WOW) large-scale testing facility using force measurement equipment. In addition, the experiment allowed drag, lift, and side-force coefficients to be measured at yaw angles up to 55 degrees. Next, experimental results are presented for the Ahmed Body back angle of 35 degrees, then compared to validate the computational model for ground vehicle aerodynamics. Afterwards, we investigated the effect of heavy rainfall (LWC = 30 g/m3) on the external aerodynamics of the utility truck with the morphing boom equipment using the validated computational fluid dynamics method, and the external flow is presented using a computer visualization. Finally, force & moment coefficients and velocity distributions around the utility truck are computed for each case, and the results are compared. Keywords: Experimental Wind-Driven Rain Wind Tunnel Testing, Heavy Rainfall, The Ahmed Body, Utility Truck, Morphing Boom Equipment, Discrete Phase Model (DPM), Automotive Aerodynamics, Computational Fluid Dynamics (CFD)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call