Abstract

Impedance plethysmography of extremities typically involves band electrodes around limbs to monitor changes in blood volume. This often causes monitored blood variations to only generate minuscule impedance values relative to the measured baseline, attributed to the tissue surrounding the artery or vein of interest. Smaller, ECG type electrodes can provide a larger signal, however their output is very easily affected by the placement of the electrodes relative to the targeted vasculature. This paper presents a novel method to adjust the active surface of electrodes, introducing Dynamically Re-sizeable Electrodes (DRE), to only target the exact area of interest, forming localised electrodes, without having to manually re-position them. Elongated rectangular electrodes were partitioned into smaller electrode segments, interconnected through custom circuitry. For the development and assessment of the DRE system, work was carried out both experimentally in-vitro on gelatine phantoms using custom switching circuits and through finite element modelling (FEM) simulations in COMSOL. A scanning sequence made use of DRE in single segment variable tetra-pole (SSVT) mode proved capable to identify the transcutaneous location of the blood vessel of interest and the specific electrode segments located in its vicinity. Impedance measurements were then taken using these segments connected to form localised electrodes only placed over the targeted vessel. The resulting localised electrodes exhibited up to [Formula: see text] increased sensitivity to blood variations relative to larger electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call