Abstract

Fracture propagation in brittle rock is very fast and highly dynamic. Typically this process consists of fracture initiation, propagation and termination. Growth of micro-fractures is conceptually and numerically well established, however, current practices to model fracture propagation in rock employs slow evolving static regimes that do not represent the true nature of fracture propagation in the laboratory or the field. This paper presents a newly developed numerical approach using Micro-Brittle Dynamics theory to model the propagation of fractures through rock in real time. This work presented here is based on a newly developed Dynamic Rock Fracture Model (DRFM2D) and validated against laboratory experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.