Abstract

SUMMARYThe goal of the present study was to improve the CERES-wheat model simulation of grain protein concentration (GPC) for winter durum wheat and to use the model as a basis for the development of a GPC Simplified Forecasting Index (SFIpro). The performances of CERES-wheat, which is one of the most widespread crop simulation models, with (i) its standard GPC routine and (ii) a novel equation developed to improve the model GPC simulation for durum wheat, were assessed through comparison with field data. Subsequently, CERES-wheat was run for a 56-year period in order to identify the most important status and forcing variables affecting GPC simulation. The number of dry days during the early growth stages and the leaf area index (LAI; green leaf area per unit ground surface area) at heading stage (LAI5) were identified as the main variables positively correlated with CERES-wheat predicted GPC, and so included in the SFIpro. At validation against observed data SFIpro was found to perform differently on the basis of observed plant LAI. In fact, SFIpro was able to forecast GPC variability for intermediate values of LAI5 ranging from 1 to 2, while it totally failed when LAI5 was outside this range (LAI5 < 1 or LAI5 > 2). The results suggest that the relationship between LAI and GPC is not linear and that the model assumptions for GPC simulation in CERES-wheat are only partially confirmed, being valid for an intermediate range of LAI.

Highlights

  • Durum wheat (Triticum turgidum L. var. durum) is the only species able to provide the raw material for traditional pasta making

  • The model identified drought conditions as a promoter of Grain protein concentration (GPC) with significant negative correlations at all growth stages with monthly total precipitation (TP) (P ⩽ 0·001 at BBCH2 and 7; P ⩽ 0·05 at BBCH5) and corresponding positive correlations with days without rainfall (NR) (P ⩽ 0·001 at BBCH2 and 7; P ⩽ 0·05 at BBCH5)

  • The aim of the current research was the development of a simplified forecasting index for the assessment of GPC in durum wheat, based on the identification of the main status and forcing variables affecting GPC implemented in the CERES-wheat model

Read more

Summary

Introduction

Durum wheat (Triticum turgidum L. var. durum) is the only species able to provide the raw material for traditional pasta making. Durum) is the only species able to provide the raw material for traditional pasta making. It is a key crop for Italian agriculture in terms of both national consumption and exportation. Grain protein concentration (GPC) has a positive effect on the rheological and cooking properties of pasta (Dexter & Matsuo 1977; Cubadda et al 2007). By increasing the GPC, the fraction of gluten increases and its quality improves (Dexter & Matsuo 1977). For these reasons, in global wheat trade the higher the GPC, the higher the price paid to farmers

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call