Abstract
The correlation between in vivo and in vitro data is yet not sufficiently optimized to allow a significant reduction and replacement of animal testing in pharmaceutical development. One of the main reasons for this lies in the poor mechanistic understanding and interpretation of the physical mechanisms enabling formulation rely on for deploying the drug. One mechanism that still lacks a proper interpretation is the kinetics of drug release from nanocarriers. In this work, we investigate two different types of classical enabling formulations – i) cyclodextrin solutions and ii) liposomal dispersions – by a combination of an experimental method (i.e. UV–Vis localized spectroscopy) and mathematical modelling/numerical data fitting. With this approach, we are able to discriminate precisely between the amount of drug bound to nanocarriers or freely dissolved at any time point; in addition, we can precisely estimate the binding and diffusivity constants of all chemical species (free drug/bound drug). The results obtained should serve as the first milestone for the further development of reliable in vitro/in silico models for the prediction of in vivo drug bioavailability when enabling formulations are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.