Abstract

We developed dominant height growth models for Norway spruce ( Picea abies (L.) Karst.) and Scots pine ( Pinus sylvestris L.) in Norway using national forest inventory (NFI) data. The data were collected for a different purpose which potentially causes problems for dominant height growth modelling due to short time series and large age errors. We used the generalized algebraic difference approach and fitted 15 different models using nested regression techniques. Despite the potential problems of NFI data the models fitted to these data were unbiased for most of the age and site index range covered by the NFI data when tested against independent data from long-term experiments (LTE). Biased predictions for young stands and better site indices that are better represented in the LTE data, led us to fit models to a combined data set for unbiased predictions across the total data range. The models fitted to the combined data that were unbiased with little residual variation when tested against an independent data set based on stem analysis of 73 sample trees from southeastern Norway. No indications of regional differences in dominant height growth across Norway were detected. We tested whether the better growing conditions during the short time series (22 years) of the NFI data had affected our dominant height growth models relative to long-term growing conditions, but found only minor bias. The combination with LTE data that have been collected during a longer period (91 years) reduced this potential bias. The dominant height growth models presented here can be used as potential height growth models in individual tree-based forest growth models or as site index models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call