Abstract

In this paper, a finite element model (FEM) was developed to investigate failure mechanism and compression after impact (CAI) strength of woven carbon fibre reinforced polymer (CFRP) after low-velocity impact (LVI) subjected to biaxial compressive loading. A built-in VUMAT user-defined material subroutine was adopted to take into account the in-plane damage and intralaminar delamination under LVI loading and in-plane compression. The LVI response, failure pattern, and residual mechanical properties under uniaxial compression were compared to the available experimental data to verify the numerical model. The damage initiation, subsequent evolution, final failure modes, and residual strength of the composite laminates with LVI damages subjected to biaxial compressive loading are presented by numerical methods, and the effects of impact energy and impactor diameter on the residual strength of the laminates are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call