Abstract

It is far from obvious to find logical counterparts to crytographic protocol primitives. In logic, a common assumption is that agents are perfectly rational and have no computational limitations. This creates a dilemma. If one merely abstracts from computational aspects, protocols become trivial and the difference between tractable and intractable computation, surely an essential feature of protocols, disappears. This way, the protocol gets lost. On the other hand, if one ‘merely′ (scare quotes indeed) models agents with computational limitations (or otherwise bounded rationality), very obvious aspects of reasoning become problematic. That way, the logic gets lost. We present a novel way out of this dilemma.We propose an abstract logical architecture wherein public and private, or symmetric keys, and their roles in crytographic protocols, all have formal counterparts. Instead of having encryption and decryption done by a principal, the agent sending or receiving messages, we introduce additional, virtual, agents to model that, so that one-way-function aspects of computation can be modelled as constraints on the communication between principals and these virtual counterparts. In this modelling it does not affect essential protocol features if agents are computationally unlimited.We have implemented the proposal in a dynamic epistemic model checker called DEMO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.