Abstract
BackgroundInference using standard linear regression models (LMs) relies on assumptions that are rarely satisfied in practice. Substantial departures, if not addressed, have serious impacts on any inference and conclusions; potentially rendering them invalid and misleading. Count, bounded and skewed outcomes, common in physical activity research, can substantially violate LM assumptions. A common approach to handle these is to transform the outcome and apply a LM. However, a transformation may not suffice.MethodsIn this paper, we introduce the generalized linear model (GLM), a generalization of the LM, as an approach for the appropriate modelling of count and non-normally distributed (i.e., bounded and skewed) outcomes. Using data from a study of physical activity among older adults, we demonstrate appropriate methods to analyse count, bounded and skewed outcomes.ResultsWe show how fitting an LM when inappropriate, especially for the type of outcomes commonly encountered in physical activity research, substantially impacts the analysis, inference, and conclusions compared to a GLM.ConclusionsGLMs which more appropriately model non-normally distributed response variables should be considered as more suitable approaches for managing count, bounded and skewed outcomes rather than simply relying on transformations. We recommend that physical activity researchers add the GLM to their statistical toolboxes and become aware of situations when GLMs are a better method than traditional approaches for modeling count, bounded and skewed outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Behavioral Nutrition and Physical Activity
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.