Abstract

Background and ObjectivesThe translation of hemodynamic quantities based on wall shear stress (WSS) or intravascular helical flow into clinical biomarkers of coronary atherosclerotic disease is still hampered by the assumptions/idealizations required by the computational fluid dynamics (CFD) simulations of the coronary hemodynamics. In the resulting budget of uncertainty, inflow boundary conditions (BCs) play a primary role. Accordingly, in this study we investigated the impact of the approach adopted for in vivo coronary artery blood flow rate assessment on personalized CFD simulations where blood flow rate is used as inflow BC. MethodsCFD simulations were carried out on coronary angiograms by applying personalized inflow BCs derived from four different techniques assessing in vivo surrogates of flow rate: continuous thermodilution, intravascular Doppler, frame count-based 3D contrast velocity, and diameter-based scaling law. The impact of inflow BCs on coronary hemodynamics was evaluated in terms of WSS- and helicity-based quantities. ResultsAs main findings, we report that: (i) coronary flow rate values may differ based on the applied flow derivation technique, as continuous thermodilution provided higher flow rate values than intravascular Doppler and diameter-based scaling law (p = 0.0014 and p = 0.0023, respectively); (ii) such intrasubject differences in flow rate values lead to different surface-averaged values of WSS magnitude and helical blood flow intensity (p<0.0020); (iii) luminal surface areas exposed to low WSS and helical flow topological features showed robustness to the flow rate values. ConclusionsAlthough the absence of a clinically applicable gold standard approach prevents a general recommendation for one coronary blood flow rate derivation technique, our findings indicate that the inflow BC may impact computational hemodynamic results, suggesting that a standardization would be desirable to provide comparable results among personalized CFD simulations of the coronary hemodynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.