Abstract
Convergent input from cells in the medial superior olive (MSO) and lateral superior olive (LSO) onto a single inferior colliculus (IC) cell explains many findings that are not compatible with a simple coincidence detector mechanism. Here this explanation is tested using a physiologically accurate computer model of the binaural pathway in which the input to the IC cell is either from two MSO cells or a MSO and a LSO cell. Auditory nerve (AN) spike trains are formed by a stochastic hair cell model following a basilar membrane simulation using a gammatone filter. In subsequent cells input spikes cause post-synaptic potentials (PSPs) which are summed causing the cell to fire when the sum crosses a threshold. The individual cells are matched to the physiology by varying the number of inputs, the magnitude and duration of the PSPs and the firing threshold. Non-linear best-phase-versus-frequency functions arise if the two IC inputs have different best frequencies and different characteristic delays. One input can be selectively suppressed by turning on an additional tone at the worst phase of that input. Non-zero characteristic phases arise if the characteristic frequencies of the AN fibres feeding into a single superior olive cell are mismatched.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.