Abstract

The influence of pre-treatments and different dehydrating temperatures on the drying dynamics, energy consumption, and quality attribute of yam chips was studied. Dehydration was executed employing a convectional oven dryer under four temperatures (50, 60, 70, and 80 °C) and 2.0 m/s air velocity. Yam chips were subjected to pre-treatment conditions of blanching (for 1, 2, 3, 4, and 5 min), citric acid (1 and 5 %), and ascorbic acid (1 and 5 %) solutions whereas, untreated yam chips samples served as the control. Dehydrated yam chips were further assessed for textural and colour properties. The drying rate was found to be faster at a higher temperature of 80 °C compared to lower temperatures of 50, 60, and 70 °C. The asymptotic model was established to be the suitable descriptive model for predicting moisture profile in the pre-treated yam chips based on highest R2 values (0.995–0.999), lowest χ2 values (4.422–18.498), and the root mean square error (RMSE) values (2.103–4.30). Pre-treatment and drying temperature had a significant (p <0.05) impact on the hardness and colour of dehydrated yam chips. Blanching at 4 min yielded yam chips with most preferred texture (hardness: 81.3 N) and lightness (L*) in colour values (71.07 %) after drying compared to other pre-treated samples. The effective moisture diffusivity values of the pre-treated samples were in the range of 5.17294 × 10−9m2/s to 1.10143 × 10−8m2/s for 5 % citric acid samples at 50 °C and all pre-treated samples at 80 °C respectively. The general findings of the study indicated a least energy usage of 43.68 kWh as a cost-effective method of drying. Also, 4 min blanching, 5 % citric acid, and 1 % ascorbic acid at 80 °C were found to be the optimum conditions for pre-treating yam chips based on lower energy level consumption rates and improved sensory properties thus attributing to the quality of the dried yam chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.